Effects of dimethylolpropionic acid modification on the characteristics of polyethylene terephthalate fibers

24Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Polyethylene terephthalate (PET) fibers are widely used in the preparation of artificial ligaments. However, due to their lack of hydrophilicity, PET fibers have low biocompatibility, which usually results in the poor biological activity of the products. In the present study, in order to improve the hydrophilicity and biocompatibility of PET fibers, we modified their surface using dimethylolpropionic acid (DMPA). Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), tensile testing and cell culture were employed to observe the effects of DMPA modification on the characteristics of the DMPA-PET fibers. In contrast to the original PET fibers, the surface of the DMPA-PET fibers became rough as demonstrated by SEM. The FTIR spectrum further confirmed that a number of hydrophilic groups were formed on the surface of DMPA-PET. However, there were no significant changes in crystallinity and tensile strength between the PET and the DMPA-PET fibers as revealed by DSC and XRD (P>0.05). Finally, the cell co-culture test revealed that the adhesion and proliferation of bone marrow-derived stromal cells increased greatly on the DMPA-PET fibers compared to those on the original PET fibers (P<0.05). These results demonstrate that DMPA-PET fibers have significant potential as a material for the development of artificial ligaments.

Cite

CITATION STYLE

APA

Huang, Z., Bi, L., Zhang, Z., & Han, Y. (2012). Effects of dimethylolpropionic acid modification on the characteristics of polyethylene terephthalate fibers. Molecular Medicine Reports, 6(4), 709–715. https://doi.org/10.3892/mmr.2012.1012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free