During the last 200 years, many lakes have suffered from eutrophication, implying an increase of both nutrient loading and organic matter (Wetzel, 1996). An aspect that has often been neglected in freshwater systems is the fact that phytoplankton is often not evenly distributed horizontally in space in shallow lakes. Although the occurrence of phytoplankton patchiness in marine systems has been known for a long time (e.g., Platt et al., 1970; Steele, 1978; Steele & Henderson, 1992), phytoplankton in shallow lakes is often assumed to be homogeneously distributed. However, there are various mechanisms that may cause horizontal heterogeneity in shallow lakes. For example, grazing by aggregated zooplankton and other organisms may cause spatial heterogeneity in phytoplankton (Scheffer & De Boer, 1995). Submerged macrophyte beds may be another mechanism, through reduction of resuspension by wave action and allopathic effects on the algal community (Van den Berg et al., 1998). For large shallow lakes, wind can be a dominant factor leading to both spatial and temporal heterogeneity of phytoplankton (Carrick et al., 1993), either indirectly by affecting the local nutrient concentrations due to resuspended particles, or directly by resuspending algae from the sediment (Scheffer, 1998). In the management of large lakes, prediction of the phytoplankton distribution can assist the manager to decide on an optimal course of action, such as biomanipulation and regulation of the use of the lake for recreation activities or potable water supply (Reynolds, 1999). However, it is difficult to measure the spatial distribution of phytoplankton. Mathematical modeling of a phytoplankton can be an important alternative methodology in improving our knowledge regarding the physical, chemical and biological processes related to phytoplankton ecology (Scheffer, 1998; Edwards & Brindley, 1999; Mukhopadhyay & Bhattacharyya, 2006). Over the past decade there has been a concerted effort to increase the realism of ecosystem models that describe plankton production as a biological indicator of eutrophication. Most
CITATION STYLE
Souza Cardoso, L. de, Fragoso, C. R., Siqueira, R., & Motta Marques, D. da. (2012). Hydrodynamic Control of Plankton Spatial and Temporal Heterogeneity in Subtropical Shallow Lakes. In Hydrodynamics - Natural Water Bodies. InTech. https://doi.org/10.5772/30669
Mendeley helps you to discover research relevant for your work.