Internet-of-Things (IoT) creates a significant impact in spectrum sensing, information retrieval, medical analysis, traffic management, etc. These applications require continuous information to perform a specific task. At the time, various intermediate attacks such as jamming, priority violation attacks, and spectrum poisoning attacks affect communication because of the open nature of wireless communication. These attacks create security and privacy issues while making data communication. Therefore, a new method autoencoder deep neural network (AENN) is developed by considering exploratory, evasion, causative, and priority violation attack. The created method classifies the transmission outcomes used to predict the transmission state, whether it is jam data transmission or sensing data. After that, the sensing data is applied for network training that predicts the intermediate attacks. In addition to this, the channel access algorithm is used to validate the channel for every access that minimizes unauthorized access. After validating the channel according to the neural network, data have been transmitted over the network. The defined process is implemented, and the system minimizes different attacks on various levels of energy consumption. The effectiveness of the system is implemented using TensorFlow, and the system ensures the 99.02% of detection rate when compared with other techniques.
CITATION STYLE
Ali, S. M., Elameer, A. S., & Jaber, M. M. (2021). IoT network security using autoencoder deep neural network and channel access algorithm. Journal of Intelligent Systems, 31(1), 95–103. https://doi.org/10.1515/jisys-2021-0173
Mendeley helps you to discover research relevant for your work.