We synthesize ScCoO3 perovskite and its solid solutions, ScCo1-xFexO3 and ScCo1-xCrxO3, under high pressure (6 GPa) and high temperature (1570 K) conditions. We find noticeable shifts from the stoichiometric compositions, expressed as (Sc1-xMx)MO3 with x = 0.05-0.11 and M = Co, (Co, Fe) and (Co, Cr). The crystal structure of (Sc0.95Co0.05)CoO3 is refined using synchrotron x-ray powder diffraction data: space group Pnma (No. 62), Z = 4 and lattice parameters a = 5.26766(1) Å, b = 7.14027(2) Å and c = 4.92231(1) Å. (Sc0.95Co0.05)CoO3 crystallizes in the GdFeO3-type structure similar to other members of the perovskite cobaltite family, ACoO3 (A3+ = Y and Pr-Lu). There is evidence that (Sc0.95Co0.05)CoO3 has non-magnetic low-spin Co3+ ions at the B site and paramagnetic high-spin Co3+ ions at the A site. In the iron-doped samples (Sc1-xMx)MO3 with M = (Co, Fe), Fe3+ ions have a strong preference to occupy the A site of such perovskites at small doping levels.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Yi, W., Presniakov, I. A., Sobolev, A. V., Glazkova, Y. S., Matsushita, Y., Tanaka, M., … Belik, A. A. (2015). Structure and cation distribution in perovskites with small cations at the A site: The case of ScCoO3. Science and Technology of Advanced Materials, 16(2). https://doi.org/10.1088/1468-6996/16/2/024801