Genetic network inference: From co-expression clustering to reverse engineering

745Citations
Citations of this article
605Readers
Mendeley users who have this article in their library.

Abstract

Motivation: Advances in molecular biological, analytical and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-cluster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e. who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting and bioengineering.

Cite

CITATION STYLE

APA

D’Haeseleer, P., Liang, S., & Somogyi, R. (2000). Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics, 16(8), 707–726. https://doi.org/10.1093/bioinformatics/16.8.707

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free