After periodontal tissue injury, reconstruct soft tissue sealing around the tooth surface is of fundamental importance to treat periodontitis. Among multiple cell types, fibroblast plays a central role in reestablishing functional periodontium. To enhance fibroblast activity, a novel metal-organic framework-based nanoplatform is fabricated using mesoporous Prussian blue (MPB) nanoparticles to load baicalein (BA), named MPB-BA. Drug release test displayed sustained BA release of MPB-BA. Cell proliferation, transwell migration and wound healing tests revealed accelerated fibroblast proliferation and migration for the established MPB-BA nanoplatform. Moreover, vinculin immunofluorescence staining, western blot and quantitative real-time PCR analysis showed up-regulated vinculin protein and integrin α5 and integrin β1 gene expressions for MPB-BA, suggesting improved cell adhesion. In addition, hematoxylin and eosin (H&E) and Masson trichromatic staining suggested superior anti-inflammatory and collagen fiber reconstruction effects for MPB-BA in a rat experimental periodontitis model in vivo. Our study may provide a promising strategy for the treatment of periodontitis.
CITATION STYLE
Jiao, J., Tian, Y., Li, Y., Liang, Y., Deng, S., Wang, W., … Li, C. (2023). Metal-organic framework-based nanoplatform enhance fibroblast activity to treat periodontitis. Dental Materials Journal, 42(1), 19–29. https://doi.org/10.4012/dmj.2022-096
Mendeley helps you to discover research relevant for your work.