Externally imposed electric field enhances plant root tip regeneration

  • Kral N
  • Hanna Ougolnikova A
  • Sena G
N/ACitations
Citations of this article
61Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In plants, shoot and root regeneration can be induced in the distinctive conditions of tissue culture (in vitro) but is also observed in intact individuals (in planta) recovering from tissue damage. Roots, for example, can regenerate their fully excised meristems in planta, even in mutants with impaired apical stem cell niches. Unfortunately, to date a comprehensive understanding of regeneration in plants is still missing. Here, we provide evidence that an imposed electric field can perturb apical root regeneration in Arabidopsis. Crucially, we explored both spatial and temporal competences of the stump to respond to electrical stimulation, by varying respectively the position of the cut and the time interval between excision and stimulation. Our data indicate that a brief pulse of an electric field parallel to the root is sufficient to increase by up to two-fold the probability of its regeneration, and to perturb the local distribution of the hormone auxin, as well as cell division regulation. Remarkably, the orientation of the root towards the anode or the cathode is shown to play a role.

Cite

CITATION STYLE

APA

Kral, N., Hanna Ougolnikova, A., & Sena, G. (2016). Externally imposed electric field enhances plant root tip regeneration. Regeneration, 3(3), 156–167. https://doi.org/10.1002/reg2.59

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free