Terahertz communication has been proposed as one of the basic key technologies of the sixth-generation wireless network (6G) due to its significant advantages, such as ultra-large bandwidth, ultra-high transmission rates, high-precision positioning, and high-resolution perception. In terahertz-enabled 6G communication systems, the intelligent reconfiguration of wireless propagation environments by deploying reconfigurable intelligent surfaces (RIS) will be an important research direction. This paper analyzes the far field and near field of RIS-assisted wireless communication and a detailed system description is presented. Subsequently, this paper presents a specific study of the channel model for an RIS-assisted 6G communication system in the far-field and near-field cases, respectively. Finally, an integrated simulation of the channel models for the far-field and near-field cases is carried out, and the performance of the RIS auxiliary link measured in terms of signal-to-noise ratio (SNR) is compared and analyzed. The results show that increasing the size of the RIS surface to improve the SNR is an effective method to enhance the coverage performance of the 6G THz communication system under the strong guarantee of the ultra-large bandwidth of THz.
CITATION STYLE
Fu, X., Peng, R., Liu, G., Wang, J., Yuan, W., & Kadoch, M. (2022). Channel Modeling for RIS-Assisted 6G Communications. Electronics (Switzerland), 11(19). https://doi.org/10.3390/electronics11192977
Mendeley helps you to discover research relevant for your work.