Physiological Signals and Affect as Predictors of Advertising Engagement

1Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

This study investigated the use of affect and physiological signals of heart rate, electrodermal activity, pupil dilation, and skin temperature to classify advertising engagement. The ground truth for the affective and behavioral aspects of ad engagement was collected from 53 young adults using the User Engagement Scale. Three gradient-boosting classifiers, LightGBM (LGBM), HistGradientBoostingClassifier (HGBC), and XGBoost (XGB), were used along with signal fusion to evaluate the performance of different signal combinations as predictors of engagement. The classifiers trained on the fusion of skin temperature, valence, and tiredness (features n = 5) performed better than those trained on all signals (features n = 30). The average AUC ROC scores for the fusion set were XGB = 0.68 (0.10), LGBM = 0.69 (0.07), and HGBC = 0.70 (0.11), compared to the lower scores for the set of all signals (XGB = 0.65 (0.11), LGBM = 0.66 (0.11), HGBC = 0.64 (0.10)). The results also show that the signal fusion set based on skin temperature outperforms the fusion sets of the other three signals. The main finding of this study is the role of specific physiological signals and how their fusion aids in more effective modeling of ad engagement while reducing the number of features.

Cite

CITATION STYLE

APA

Strle, G., Košir, A., & Burnik, U. (2023). Physiological Signals and Affect as Predictors of Advertising Engagement. Sensors, 23(15). https://doi.org/10.3390/s23156916

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free