Predation is one of the main evolutionary drivers of social grouping. While it is well appreciated that predation risk is likely not shared equally among individuals within groups, its detailed quantification has remained difficult due to the speed of attacks and the highly dynamic nature of collective prey response. Here, using high-resolution tracking of solitary predators (Northern pike) hunting schooling fish (golden shiners), we not only provide insights into predator decision-making, but show which key spatial and kinematic features of predator and prey predict the risk of individuals to be targeted and to survive attacks. We found that pike tended to stealthily approach the largest groups, and were often already inside the school when launching their attack, making prey in this frontal ‘strike zone’ the most vulnerable to be targeted. From the prey’s perspec-tive, those fish in central locations, but relatively far from, and less aligned with, neighbours, were most likely to be targeted. While the majority of attacks were successful (70%), targeted individuals that did manage to avoid being captured exhibited a higher maximum acceleration response just before the attack and were further away from the pike‘s head. Our results highlight the crucial interplay between predators’ attack strategy and response of prey underlying the predation risk within mobile animal groups.
CITATION STYLE
Jolles, J. W., Sosna, M. M. G., Mazué, G. P. F., Twomey, C. R., Bak-Coleman, J., Rubenstein, D. I., & Couzin, I. D. (2022). Both prey and predator features predict the individual predation risk and survival of schooling prey. ELife, 11. https://doi.org/10.7554/ELIFE.76344
Mendeley helps you to discover research relevant for your work.