Online learning approach for predictive real-time energy trading in cloud-rans

4Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Constantly changing electricity demand has made variability and uncertainty inherent characteristics of both electric generation and cellular communication systems. This paper develops an online learning algorithm as a prescheduling mechanism to manage the variability and uncertainty to maintain cost-aware and reliable operation in cloud radio access networks (Cloud-RANs). The proposed algorithm employs a combinatorial multi-armed bandit model and minimizes the long-term energy cost at remote radio heads. The algorithm preschedules a set of cost-efficient energy packages to be purchased from an ancillary energy market for the future time slots by learning both from cooperative energy trading at previous time slots and by exploring new energy scheduling strategies at the current time slot. The simulation results confirm a significant performance gain of the proposed scheme in controlling the available power budgets and minimizing the overall energy cost compared with recently proposed approaches for real-time energy resources and energy trading in Cloud-RANs.

Cite

CITATION STYLE

APA

Ariffin, W. N. S. F. W., Zhang, X., Nakhai, M. R., Rahim, H. A., & Badlishah Ahmad, R. (2021). Online learning approach for predictive real-time energy trading in cloud-rans. Sensors, 21(7). https://doi.org/10.3390/s21072308

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free