The genus Streptomyces is the most abundant and essential microbes in the soil microbial community. Streptomyces are familiar and have great potential to produce a large variety of bioactive compounds. This genus considers an efficient biofertilizer based on its plant growth-promoting activities. Based on their ability to produce a wide varieties of bioactive molecules, the present study aimed to explore the potential plant growth promotion of four Streptomyces strains and their role in enhancing cucumber growth and yield under greenhouse conditions. Streptomyces sp. strain HM2, Streptomyces thinghirensis strain HM3, Streptomyces sp. strain HM8, and Streptomyces tricolor strain HM10 were chosen for the current study. Plant growth-promoting (PGP) features, i.e., indole acetic acid (IAA) production, siderophore excretion, and solubilizing phosphate, were evaluated in vitro. All four strains produced IAA, siderophore, and immobilized inorganic phosphate. Following 4 days of incubation at 30 °C, strains HM2, HM3, HM8, and HM10 produced copious amounts of IAA (18, 22, 62, and 146 µg/mL, respectively) and siderophores (42.59, 40.01, 16.84, 64.14% SU, respectively). At the same time, P solubilization efficacy scored 64.3%, 84.4%, 57.2%, and 81.6% with the same frequency. During in planta evaluation, selected Streptomyces strains combined with rock phosphate were assessed as biofertilizers on the growth and yield of cucumber plants. Under all treatments, positive and significant differences in studied traits were manifested except dry stem matter (SDM), net assimilation rate (NAR), relative growth rate (RGR), and fruit firmness (FF). Treatment T4 (rock phosphate + strain HM3) followed by T5 (rock phosphate + strain HM8) revealed the best results for plant height (PH), number of leaves per plant (NLPP), root length (RL), number of fruits per plant (NFPP), fruit length (FL), fruit diameter (FD), fruit fresh weight per plant (FFWPP), soil P (SP) after 21 DAT, and soil P at the end of the experiment. Notably, T6 (rock phosphate + strain HM10) caused a considerable increase in leaf area (LA). Plant growth-promoting bacteria enhance plant growth and yield through phosphorus solubilizing, improve nutrient availability, produce phytohormones, and support plant growth under abiotic stress. These features are important for sustainable agriculture and reducing environmental pollution with chemical fertilizers and pesticides.
CITATION STYLE
Omar, A. F., Abdelmageed, A. H. A., Al-Turki, A., Abdelhameid, N. M., Sayyed, R. Z., & Rehan, M. (2022). Exploring the Plant Growth-Promotion of Four Streptomyces Strains from Rhizosphere Soil to Enhance Cucumber Growth and Yield. Plants, 11(23). https://doi.org/10.3390/plants11233316
Mendeley helps you to discover research relevant for your work.