Detecting and understanding historical changes in the frequency of geo-climatic hazards (G-CHs) is crucial for the quantification of current hazards and project them into the future. Here we focus in the eastern subtropical Andes (32 33_ S), using meteorological data and a century-long inventory of 553 G-CHs triggered by rainfall or snowfall. We first analyse their spatio-temporal distributions and the role of climate variability in the year-to-year changes in the number of days per season with G-CHs. Precipitation is positively correlated with the number of G-CHs across the region and year-round; mean temperature is negatively correlated with snowfall-driven hazards in the western (higher) half of the study region during winter and with rainfall-driven hazards in the eastern zone during summer. The trends of the G-CH frequency since the mid-20th century were calculated, paying attention to their non-systematic monitoring. The G-CH series for the different triggers, zones and seasons were generally stationary. Nonetheless, there is a small positive trend in rainfall-driven G-CHs in the eastern zone during summer, congruent with a rainfall increase there. We also found a decrease in snowfall-driven G-CHs in the western zone from the late 1990s onwards, most likely due to a reduction in winter precipitation rather than to an increase in temperature.
CITATION STYLE
Vergara, I., M. Moreiras, S., Araneo, Di., & Garreaud, R. (2020). Geo-climatic hazards in the eastern subtropical Andes: Distribution, climate drivers and trends. Natural Hazards and Earth System Sciences, 20(5), 1353–1367. https://doi.org/10.5194/nhess-20-1353-2020
Mendeley helps you to discover research relevant for your work.