Robust independence systems

4Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

An independence system is one of the most fundamental combinatorial concepts, which includes a variety of objects in graphs and hypergraphs such as matchings, stable sets, and matroids. We discuss the robustness for independence systems, which is a natural generalization of the greedy property of matroids. For a real number α > 0, a set is said to be α-robust if for any k, it includes an α-approximation of the maximum k-independent set, where a set Y in is called k-independent if the size |Y| is at most k. In this paper, we show that every independence system has a -robust independent set, where denotes the exchangeability of . Our result contains a classical result for matroids and the ones of Hassin and Rubinstein,[12] for matchings and Fujita, Kobayashi, and Makino,[7] for matroid 2-intersections, and provides better bounds for the robustness for many independence systems such as b-matchings, hypergraph matchings, matroid p-intersections, and unions of vertex disjoint paths. Furthermore, we provide bounds of the robustness for nonlinear weight functions such as submodular and convex quadratic functions. We also extend our results to independence systems in the integral lattice with separable concave weight functions. © 2011 Springer-Verlag.

Cite

CITATION STYLE

APA

Kakimura, N., & Makino, K. (2011). Robust independence systems. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6755 LNCS, pp. 367–378). https://doi.org/10.1007/978-3-642-22006-7_31

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free