Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks

17Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

In addition to their biological function, protein complexes reduce the exposure of the constituent proteins to the risk of undesired oligomerization by reducing the concentration of the free monomeric state. We interpret this reduced risk as a stabilization of the functional state of the protein. We estimate that protein-protein interactions can account for ~2-4 kBT of additional stabilization; a substantial contribution to intrinsic stability. We hypothesize that proteins in the interaction network act as evolutionary capacitors which allows their binding partners to explore regions of the sequence space which correspond to less stable proteins. In the interaction network of baker's yeast, we find that statistically proteins that receive higher energetic benefits from the interaction network are more likely to misfold. A simplified fitness landscape wherein the fitness of an organism is inversely proportional to the total concentration of unfolded proteins provides an evolutionary justification for the proposed trends. We conclude by outlining clear biophysical experiments to test our predictions.

Cite

CITATION STYLE

APA

Dixit, P. D., & Maslov, S. (2013). Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks. PLoS Computational Biology, 9(4). https://doi.org/10.1371/journal.pcbi.1003023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free