Inner structure and dynamics of microgels with low and medium crosslinker content prepared: Via surfactant-free precipitation polymerization and continuous monomer feeding approach

23Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

The preparation of poly(N-isopropylacrylamide) microgels via classical precipitation polymerization (batch method) and a continuous monomer feeding approach (feeding method) leads to different internal crosslinker distributions, i.e., from core-shell-like to a more homogeneous one. The internal structure and dynamics of these microgels with low and medium crosslinker concentrations are studied with dynamic light scattering and small-angle neutron scattering in a wide q-range below and above the volume phase transition temperature. The influence of the preparation method, and crosslinker and initiator concentration on the internal structure of the microgels is investigated. In contrast to the classical conception where polymer microgels possess a core-shell structure with the averaged internal polymer density distribution within the core part, a detailed view of the internal inhomogeneities of the PNIPAM microgels and the presence of internal domains even above the volume phase transition temperature, when polymer microgels are in the deswollen state, are presented. The correlation between initiator concentration and the size of internal domains that appear inside the microgel with temperature increase is demonstrated. Moreover, the influence of internal inhomogeneities on the dynamics of the batch- and feeding-microgels studied with neutron spin-echo spectroscopy is reported.

References Powered by Scopus

Solution Properties of Poly(N-isopropylacrylamide)

3035Citations
N/AReaders
Get full text

Preparation of aqueous latices with N-isopropylacrylamide

1148Citations
N/AReaders
Get full text

Stimuli-responsive polymers and their applications

1046Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Advances in the use of microgels as emulsion stabilisers and as a strategy for cellulose functionalisation

33Citations
N/AReaders
Get full text

Enhanced catalyst performance through compartmentalization exemplified by colloidal L-proline modified microgel catalysts

33Citations
N/AReaders
Get full text

Soft Particles at Liquid Interfaces: From Molecular Particle Architecture to Collective Phase Behavior

30Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Kyrey, T., Witte, J., Feoktystov, A., Pipich, V., Wu, B., Pasini, S., … Holderer, O. (2019). Inner structure and dynamics of microgels with low and medium crosslinker content prepared: Via surfactant-free precipitation polymerization and continuous monomer feeding approach. Soft Matter, 15(32), 6536–6546. https://doi.org/10.1039/c9sm01161g

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 23

66%

Researcher 11

31%

Professor / Associate Prof. 1

3%

Readers' Discipline

Tooltip

Chemistry 17

55%

Physics and Astronomy 7

23%

Materials Science 6

19%

Chemical Engineering 1

3%

Article Metrics

Tooltip
Social Media
Shares, Likes & Comments: 8

Save time finding and organizing research with Mendeley

Sign up for free