Objective: We aim to deliver a framework with 2 main objectives: 1) facilitating the design of theory-driven, adaptive, digital interventions addressing chronic illnesses or health problems and 2) producing personalized intervention delivery strategies to support self-management by optimizing various intervention components tailored to people's individual needs, momentary contexts, and psychosocial variables. Materials and Methods: We propose a template-based digital intervention design mechanism enabling the configuration of evidence-based, just-in-time, adaptive intervention components. The design mechanism incorporates a rule definition language enabling experts to specify triggering conditions for interventions based on momentary and historical contextual/personal data. The framework continuously monitors and processes personal data space and evaluates intervention-triggering conditions. We benefit from reinforcement learning methods to develop personalized intervention delivery strategies with respect to timing, frequency, and type (content) of interventions. To validate the personalization algorithm, we lay out a simulation testbed with 2 personas, differing in their various simulated real-life conditions. Results: We evaluate the design mechanism by presenting example intervention definitions based on behavior change taxonomies and clinical guidelines. Furthermore, we provide intervention definitions for a real-world care program targeting diabetes patients. Finally, we validate the personalized delivery mechanism through a set of hypotheses, asserting certain ways of adaptation in the delivery strategy, according to the differences in simulation related to personal preferences, traits, and lifestyle patterns. Conclusion: While the design mechanism is sufficiently expandable to meet the theoretical and clinical intervention design requirements, the personalization algorithm is capable of adapting intervention delivery strategies for simulated real-life conditions.
CITATION STYLE
Gonul, S., Namli, T., Huisman, S., Erturkmen, G. B. L., Toroslu, I. H., & Cosar, A. (2019). An expandable approach for design and personalization of digital, just-in-time adaptive interventions. Journal of the American Medical Informatics Association, 26(3), 198–210. https://doi.org/10.1093/jamia/ocy160
Mendeley helps you to discover research relevant for your work.