The time-triggered communication paradigm is a cost-efficient way to meet the real-time requirements of cyber-physical systems. It is a non-deterministic polynomial NP-complete problem for multi-hop networks and non-strictly periodic traffic. A two-level scheduling approach is proposed to simplify the complexity during optimization. In the first level, a fuzzy-controlled quantum-behaved particle swarm optimization (FQPSO) algorithm is proposed to optimize the scheduling performance by assigning time-triggered frame instances to the basic periods of each link. In order to prevent population from high aggregation, a random mutation mechanism is used to disturb particles at the aggregation point and enhance the diversity at later stages. Fuzzy logic is introduced and well designed to realize a dynamic adaptive adjustment of the contraction-expansion coefficient and mutation rate in FQPSO. In the second level, we use an improved Satisfiability Modulo Theories (SMT) scheduling algorithm to solve the collision-free and temporal constraints. A schedulability ranking method is proposed to accelerate the computation of the SMT-based incremental scheduler. Our approach can co-optimize the jitter and load balance of communication for an off-line schedule. The experiments show that the proposed approach can improve the performance of the scheduling table, reduce the optimization time, and reserve space for incremental messages.
CITATION STYLE
Jian, J., Wang, L., Chen, H., & Nie, X. (2020). Scheduling optimization of time-triggered cyber-physical systems based on fuzzy-controlled QPSO and SMT solver. Energies, 13(3). https://doi.org/10.3390/en13030668
Mendeley helps you to discover research relevant for your work.