The psycholinguistic literature has identified two syntactic adaptation effects in language production: rapidly decaying short-term priming and long-lasting adaptation. To explain both effects, we present an ACT-R model of syntactic priming based on a wide-coverage, lexicalized syntactic theory that explains priming as facilitation of lexical access. In this model, two well-established ACT-R mechanisms, base-level learning and spreading activation, account for long-term adaptation and short-term priming, respectively. Our model simulates incremental language production and in a series of modeling studies, we show that it accounts for (a) the inverse frequency interaction; (b) the absence of a decay in long-term priming; and (c) the cumulativity of long-term adaptation. The model also explains the lexical boost effect and the fact that it only applies to short-term priming. We also present corpus data that verify a prediction of the model, that is, that the lexical boost affects all lexical material, rather than just heads. Copyright © 2011 Cognitive Science Society, Inc.
CITATION STYLE
Reitter, D., Keller, F., & Moore, J. D. (2011). A Computational Cognitive Model of Syntactic Priming. Cognitive Science, 35(4), 587–637. https://doi.org/10.1111/j.1551-6709.2010.01165.x
Mendeley helps you to discover research relevant for your work.