Opportunities for Recycling PV Glass and Coal Fly Ash into Zeolite Materials Used for Removal of Heavy Metals (Cd, Cu, Pb) from Wastewater

6Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

This work shows the development and characterization of two zeolite structures by recycling PV glass and coal fly ash for the removal of cadmium, copper, and lead from synthetic solutions containing one or three cations. The materials were characterized in terms of crystalline structure (XRD), morphology (SEM, AFM), and specific surface. For increasing the heavy-metals removal efficiency, the adsorption conditions, such as substrate dosage, preliminary concentration, and contact time, were optimized. The pseudo-second-order kinetic model adsorption kinetics fit well to describe the activity of the zeolites ZFAGPV-A and ZFAGPV-S. The zeolite adsorption equilibrium data were expressed using Langmuir and Freundlich models. The highest adsorption capacities of the ZFAGPV-A zeolite are qmaxCd = 55.56 mg/g, qmaxCu = 60.11 mg/g, qmaxPb = 175.44 mg/g, and of ZFAGPV-S, are qmaxCd = 33.45 mg/g, qmaxCu = 54.95 mg/g, qmaxPb = 158.73 mg/g, respectively. This study demonstrated a new opportunity for waste recycling for applications in removing toxic heavy metals from wastewater.

Cite

CITATION STYLE

APA

Visa, M., & Enesca, A. (2023). Opportunities for Recycling PV Glass and Coal Fly Ash into Zeolite Materials Used for Removal of Heavy Metals (Cd, Cu, Pb) from Wastewater. Materials, 16(1). https://doi.org/10.3390/ma16010239

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free