A linear optimization procedure for an EMG-driven neuromusculoskeletal model parameters adjusting: Validation through a myoelectric exoskeleton control

19Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper presents a linear optimization procedure able to adapt a simplified EMG-driven NeuroMusculoSkeletal (NMS) model to the specific subject. The optimization procedure could be used to adjust a NMS model of a generic human articulation in order to predict the joint torque by using ElectroMyoGraphic (EMG) signals. The proposed approach was tested by modeling the human elbow joint with only two muscles. Using the cross-validation method, the adjusted elbow model has been validated in terms of both torque estimation performance and predictive ability. The experiments, conducted with healthy people, have shown both good performance and high robustness. Finally, the model was used to control directly and continuously a exoskeleton rehabilitation device through EMG signals. Data acquired during free movements prove the model ability to detect the human’s intention of movement.

Cite

CITATION STYLE

APA

Buongiorno, D., Barone, F., Solazzi, M., Bevilacqua, V., & Frisoli, A. (2016). A linear optimization procedure for an EMG-driven neuromusculoskeletal model parameters adjusting: Validation through a myoelectric exoskeleton control. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9775, pp. 218–227). Springer Verlag. https://doi.org/10.1007/978-3-319-42324-1_22

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free