Oracle inequalities for sparse additive quantile regression in reproducing kernel hilbert space

45Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

This paper considers the estimation of the sparse additive quantile regression (SAQR) in high-dimensional settings. Given the nonsmooth nature of the quantile loss function and the nonparametric complexities of the component function estimation, it is challenging to analyze the theoretical properties of ultrahigh-dimensional SAQR. We propose a regularized learning approach with a two-fold Lasso-type regularization in a reproducing kernel Hilbert space (RKHS) for SAQR. We establish nonasymptotic oracle inequalities for the excess risk of the proposed estimator without any coherent conditions. If additional assumptions including an extension of the restricted eigenvalue condition are satisfied, the proposed method enjoys sharp oracle rates without the light tail requirement. In particular, the proposed estimator achieves the minimax lower bounds established for sparse additive mean regression. As a by-product, we also establish the concentration inequality for estimating the population mean when the general Lipschitz loss is involved. The practical effectiveness of the new method is demonstrated by competitive numerical results.

Cite

CITATION STYLE

APA

Lv, S., Lin, H., Lian, H., & Huang, J. (2018). Oracle inequalities for sparse additive quantile regression in reproducing kernel hilbert space. Annals of Statistics, 46(2), 781–813. https://doi.org/10.1214/17-AOS1567

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free