Oxidized lipids and lysophosphatidylcholine induce the chemotaxis, up-regulate the expression of CCR9 and CXCR4 and abrogate the release of IL-6 in human monocytes

27Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Lipids through regulation of chronic inflammation play key roles in the development of various diseases. Here, we report that a mixed population of human primary monocytes migrated towards LPC, as well as oxidized linoleic acid isoforms 9-S-HODE, 9-R-HODE and 13-R-HODE. Incubation with 9-R-HODE, 13-R-HODE and LPC resulted in increased expression of CXCR4, the receptor for SDF-1α/CXCL12, correlated with increased monocyte migration towards SDF-1α/CXCL12. Further, we report increased expression of CCR9, the receptor for TECK/CCL25, after stimulation with these lipids. Upon examining the migratory response towards TECK/CCL25, it was observed that an increase in CCR9 expression upon pre-treatment with 9-S-HODE, 9-R-HODE, 13-R-HODE and LPC resulted in increased migration of monocytes expressing CCR9. Only LPC but not any other lipid examined increased the influx of intracellular Ca2+ in monocytes. Finally, 9-S-HODE, 9-R-HODE, 13-R-HODE, or LPC inhibited the release of IL-6 from monocytes suggesting that these lipids may play important role in controlling inflammatory responses.

Cite

CITATION STYLE

APA

Rolin, J., Vego, H., & Maghazachi, A. A. (2014). Oxidized lipids and lysophosphatidylcholine induce the chemotaxis, up-regulate the expression of CCR9 and CXCR4 and abrogate the release of IL-6 in human monocytes. Toxins, 6(9), 2840–2856. https://doi.org/10.3390/toxins6092840

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free