Due to the potential toxicity of mercury, there is an immediate need to understand its uptake, transport and flux within living cells. Conventional techniques used to analyze Hg2+ are invasive, involve high cost and are less sensitive. In the present study, a highly efficient genetically encoded mercury FRET sensor (MerFS) was developed to measure the cellular dynamics of Hg2+ at trace level in real time. To construct MerFS, the periplasmic mercury-binding protein MerP was sandwiched between enhanced cyan fluorescent protein (ECFP) and venus. MerFS is pH stable, offers a measurable fluorescent signal and binds to Hg2+ with high sensitivity and selectivity. Mutant MerFS-51 binds with an apparent affinity (Kd) of 5.09 × 10−7 M, thus providing a detection range for Hg2+ quantification between 0.210 µM and 1.196 µM. Furthermore, MerFS-51 was targeted to Escherichia coli (E. coli), yeast and human embryonic kidney (HEK)-293T cells that allowed dynamic measurement of intracellular Hg2+ concentration with a highly responsive saturation curve, proving its potential application in cellular systems.
CITATION STYLE
Soleja, N., Jairajpuri, M. A., Queen, A., & Mohsin, M. (2019). Genetically encoded FRET-based optical sensor for Hg2+ detection and intracellular imaging in living cells. Journal of Industrial Microbiology and Biotechnology, 46(12), 1669–1683. https://doi.org/10.1007/s10295-019-02235-w
Mendeley helps you to discover research relevant for your work.