Theories for the maximum intensity of tropical cyclones (TCs) assume steady state. However, many TCs in simulations that run for tens of days tend to decay considerably from an early steady state in the core (CS), before stabilizing at a final equilibrium steady state (ES). This decay raises the question of whether CS or ES should be used as a comparison to the maximum intensity theories. To understand the differences between CS and ES, we investigate why TCs decay and attempt to simulate a TC with steady intensity over a 100-day period. Using the axisymmetric Cloud Model 1, we find that the CS TC decay is due to a large-scale drying of the subsidence region. Such a drying is very pronounced in axisymmetric models because shallow-to-midlevel convection is not represented accurately enough to moisten air in the subsidence region. Simulations with an added moisture relaxation term in the subsidence region and dry cyclones without any moisture both remain in a steady state for over 100 days, without decaying appreciably after the spinup period. These simulations indicate that the decay in TC simulations is due to the irreversible removal of precipitation combined with the lack of a moistening mechanism in the subsidence region. Once either of these conditions is removed, the decay disappears and the CS and ES intensities become essentially equivalent.
CITATION STYLE
Rousseau-Rizzi, R., Rotunno, R., & Bryan, G. (2021). A thermodynamic perspective on steady-state tropical cyclones. Journal of the Atmospheric Sciences, 78(2), 583–593. https://doi.org/10.1175/JAS-D-20-0140.1
Mendeley helps you to discover research relevant for your work.