Extended 3D-PTV for direct measurements of Lagrangian statistics of canopy turbulence in a wind tunnel

26Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Direct estimation of Lagrangian turbulence statistics is essential for the proper modeling of dispersion and transport in highly obstructed canopy flows. However, Lagrangian flow measurements demand very high rates of data acquisition, resulting in bottlenecks that prevented the estimation of Lagrangian statistics in canopy flows hitherto. We report on a new extension to the 3D Particle Tracking Velocimetry (3D-PTV) method, featuring real-time particle segmentation that outputs centroids and sizes of tracer particles and performed on dedicated hardware during high-speed digital video acquisition from multiple cameras. The proposed extension results in four orders of magnitude reduction in data transfer rate that enables to perform substantially longer experimental runs, facilitating measurements of convergent statistics. The extended method is demonstrated through an experimental wind tunnel investigation of the Lagrangian statistics in a heterogeneous canopy flow. We observe that acceleration statistics are affected by the mean shear at the top of the canopy layer and that Lagrangian particle dispersion at small scales is dominated by turbulence in the wake of the roughness elements. This approach enables to overcome major shortcomings from Eulerian-based measurements which rely on assumptions such as the Taylor’s frozen turbulence hypothesis, which is known to fail in highly turbulent flows.

Cite

CITATION STYLE

APA

Shnapp, R., Shapira, E., Peri, D., Bohbot-Raviv, Y., Fattal, E., & Liberzon, A. (2019). Extended 3D-PTV for direct measurements of Lagrangian statistics of canopy turbulence in a wind tunnel. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43555-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free