Robotic systems are becoming an integral part of human lives. Responding to the increased demands for robot productions, Robot Operating System (ROS), an open-source middleware suite for robotic development, is gaining traction by providing practical tools and libraries for quickly developing robots. In this paper, we are concerned with a relatively less-tested class of bugs in ROS and ROS-based robotic systems, called semantic correctness bugs, including the violation of specification, violation of physical laws, and cyber-physical discrepancy. These bugs often stem from the cyber-physical nature of robotic systems, in which noisy hardware components are intertwined with software components, and thus cannot be detected by existing fuzzing approaches that mostly focus on finding memory-safety bugs. We propose RoboFuzz, a feedback-driven fuzzing framework that integrates with ROS and enables testing of the correctness bugs. RoboFuzz features (1) data type-aware mutation for effectively stressing data-driven ROS systems, (2) hybrid execution for acquiring robotic states from both real-world and a simulator, capturing unforeseen cyber-physical discrepancies, (3) an oracle handler that identifies correctness bugs by checking the execution states against predefined correctness oracles, and (4) a semantic feedback engine for providing augmented guidance to the input mutator, complementing classic code coverage-based feedback, which is less effective for distributed, data-driven robots. By encoding the correctness invariants of ROS and four ROS-compatible robotic systems into specialized oracles, RoboFuzz detected 30 previously unknown bugs, of which 25 are acknowledged and six have been fixed.
CITATION STYLE
Kim, S., & Kim, T. (2022). RoboFuzz: fuzzing robotic systems over robot operating system (ROS) for finding correctness bugs. In ESEC/FSE 2022 - Proceedings of the 30th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering (pp. 447–458). Association for Computing Machinery, Inc. https://doi.org/10.1145/3540250.3549164
Mendeley helps you to discover research relevant for your work.