Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression

342Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

Abstract

Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF), an endothelial cell (EC)-specific mitogen, stimulates angiogenesis in vivo, particularly in ischemic regions. VEGF/VPF expression by cells of hypoxic tissues coincides with expression of its two receptors, KDR and fit-1, by ECs in the same tissues. We investigated whether hypoxia or hypoxia-dependent conditions operate in coordinating this phenomenon. Human umbilical vein and microvascular ECs were exposed to direct hypoxia or to medium conditioned (CM) by myoblasts maintained in hypoxia for 4 d. Control ECs were maintained in normoxia or normoxia-CM. Binding of 125I-VEGF to ECs was then evaluated. Hypoxic treatment of ECs had no effect on 125I-VEGF binding. However, treatment of ECs with hypoxia-CM produced a threefold increase in 125I-VEGF binding, with peak at 24 h (P < 0.001, ANOVA). Scatchard analysis disclosed that increased binding was due to a 13-fold increase in KDR receptors/cell, with no change in KDR affinity (K(d) = 260±51 pM, normoxia-CM versus K(d) = 281±94 pM, hypoxia-CM) and no change in EC number (35.6±5.9 x 103 ECs/cm2, normoxia-CM versus 33.5±5.5 x 103 ECs/cm2, hypoxia-CM). Similar results were obtained using CM from hypoxic smooth muscle cells. KDR upregulation was not prevented by addition to the hypoxia-CM of neutralizing antibodies against VEGF, tumor necrosis factor-α, transforming growth factor β1 or basic fibroblast growth factor. Similarly, addition of VEGF or lactic acid to the normoxia-CM had no effect on VEGF binding. We conclude that mechanism(s) initiated by hypoxia can induce KDR receptor upregulation in ECs. Hypoxic cells, normal or neoplastic, not only can produce VEGF/VPF, but can also modulate its effects via paracrine induction of VEGF/VPF receptors in ECs.

Cite

CITATION STYLE

APA

Brogi, E., Schatteman, G., Wu, T., Kim, E. A., Varticovski, L., Keyt, B., & Isner, J. M. (1996). Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. Journal of Clinical Investigation, 97(2), 469–476. https://doi.org/10.1172/JCI118437

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free