Phenotypic plasticity has long been a focus of research, but the mechanisms of its evolution remain controversial. Many amphibian species exhibit a similar plastic response in metamorphic timing in response to multiple environmental factors; therefore, more than one environmental factor has likely influenced the evolution of plasticity. However, it is unclear whether the plastic responses to different factors have evolved independently. In this study, we examined the relationship between the plastic responses to two experimental factors (water level and food type) in larvae of the salamander Hynobius retardatus, using a cause-specific Cox proportional hazards model on the time to completion of metamorphosis. Larvae from ephemeral ponds metamorphosed earlier than those from permanent ponds when kept at a low water level or fed conspecific larvae instead of larval Chironomidae. This acceleration of metamorphosis depended only on the permanency of the larvae's pond of origin, but not on the conspecific larval density (an indicator of the frequency of cannibalism) in the ponds. The two plastic responses were significantly correlated, indicating that they may evolve correlatively. Once plasticity evolved as an adaptation to habitat desiccation, it might have relatively easily become a response to other ecological factors, such as food type via the pre-existing developmental pathway. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
CITATION STYLE
Michimae, H., & Emura, T. (2012). Correlated evolution of phenotypic plasticity in metamorphic timing. Journal of Evolutionary Biology, 25(7), 1331–1339. https://doi.org/10.1111/j.1420-9101.2012.02523.x
Mendeley helps you to discover research relevant for your work.