Based upon existing crystallographic evidence, HbS, HbC, and HbA have essentially the same molecular structure. However, important areas of the molecule are not well defined crystallographically (e.g. the N-terminal nonhelical portion of the α and β chains), and conformational constraints differ in solution and in the crystalline state. Over the years, our laboratory and others have provided evidence of conformational changes in HbS and, more recently, in HbC. We now present data based upon allosteric perturbation monitored by front-face fluorescence, ultraviolet resonance Raman spectroscopy, circular dichroism, and oxygen equilibrium studies that confirm and significantly expand previous findings suggesting solution- active structural differences in liganded forms of HbS and HbC distal to the site of mutation and involving the 2,3-diphosphoglycerate binding pocket. The liganded forms of these hemoglobins are of significant interest because HbC crystallizes in the erythrocyte in the oxy form, and oxy HbS exhibits increased mechanical precipitability and a high propensity to oxidize. Specific findings are as follows: 1) differences in the intrinsic fluorescence indicate that the Trp microenvironments are more hydrophobic for HbS > HbC > HbA, 2) ultraviolet resonance Raman spectroscopy detects alterations in Tyr hydrogen bonding, in Trp hydrophobicity at the α1β2 interface (β37), and in the A-helix (α14/β15) of both chains, 3) displacement by inositol hexaphosphate of the Hb-bound 8-hydroxy-1,3,6- pyrenetrisulfonate (the fluorescent 2,3-diphosphoglycerate analog) follows the order HbA > HbS > HbC, and 4) oxygen equilibria measurements indicate a differential allosteric effect by inositol hexaphosphate for HbC ~ HbS > HbA.
CITATION STYLE
Hirsch, R. E., Juszczak, L. J., Fataliev, N. A., Friedman, J. M., & Nagel, R. L. (1999). Solution-active structural alterations in liganded hemoglobins C (β6 Glu → Lys) and S (β6 Glu→ Val). Journal of Biological Chemistry, 274(20), 13777–13782. https://doi.org/10.1074/jbc.274.20.13777
Mendeley helps you to discover research relevant for your work.