Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner

237Citations
Citations of this article
320Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Bacterial vaginosis increases the susceptibility to sexually transmitted infections and negatively affects women's reproductive health. Methods. To investigate host-vaginal microbiota interactions and the impact on immune barrier function, we colonized 3-dimensional (3-D) human vaginal epithelial cells with 2 predominant species of vaginal microbiota (Lactobacillus iners and Lactobacillus crispatus) or 2 prevalent bacteria associated with bacterial vaginosis (Atopobium vaginae and Prevotella bivia). Results. Colonization of 3-D vaginal epithelial cell aggregates with vaginal microbiota was observed with direct attachment to host cell surface with no cytotoxicity. A. vaginae infection yielded increased expression membrane-associated mucins and evoked a robust proinflammatory, immune response in 3-D vaginal epithelial cells (ie, expression of CCL20, hBD-2, interleukin 1β, interleukin 6, interleukin 8, and tumor necrosis factor α) that can negatively affect barrier function. However, P. bivia and L. crispatus did not significantly upregulate pattern-recognition receptor-signaling, mucin expression, antimicrobial peptides/defensins, or proinflammatory cytokines in 3-D vaginal epithelial cell aggregates. Notably, L. iners induced pattern-recognition receptor-signaling activity, but no change was observed in mucin expression or secretion of interleukin 6 and interleukin 8. Conclusions. We identified unique species-specific immune signatures from vaginal epithelial cells elicited by colonization with commensal and bacterial vaginosis-associated bacteria. A. vaginae elicited a signature that is consistent with significant disruption of immune barrier properties, potentially resulting in enhanced susceptibility to sexually transmitted infections during bacterial vaginosis. © 2014 The Author 2014.

Cite

CITATION STYLE

APA

Doerflinger, S. Y., Throop, A. L., & Herbst-Kralovetz, M. M. (2014). Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. Journal of Infectious Diseases, 209(12), 1989–1999. https://doi.org/10.1093/infdis/jiu004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free