A new method for the simple synthesis of stable heterostructured biopolymer (sodium alginate)-capped silver nanoparticles (Ag-NPs) based on green chemistry is reported. The as-prepared nanoparticles were characterized using the ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) techniques. The results showed that the as-prepared Ag-NPs have a heterostructured morphology with particle size in the range 30 ± 18–60 ± 25 nm, showing a zeta potential of −62 mV. The silver nanoparticle formation was confirmed from UV-Vis spectra showing 424 nm as maximum absorption. The particle size and crystallinity of the as-synthesized nanoparticles were analyzed using TEM and XRD measurements, respectively. FTIR spectra confirmed the presence of alginate as capping agent to stabilize the nanoparticles. The Ag-NPs also showed excellent sensing capability, with a linear response to hydrogen peroxide spanning a wide range of concentrations from 10−1 to 10−7 M, which indicates their high potential for water treatment applications, such as pollution detection and nanofiltration composites.
CITATION STYLE
Bhagyaraj, S., & Krupa, I. (2020). Alginate-mediated synthesis of hetero-shaped silver nanoparticles and their hydrogen peroxide sensing ability. Molecules, 25(3). https://doi.org/10.3390/molecules25030435
Mendeley helps you to discover research relevant for your work.