Tumor necrosis factor α (TNF-α) is used as a biomarker for the diagnosis of various inflammatory and autoimmune diseases. In recent years, numerous approaches have been used for the qualitative and quantitative analyses of TNF-α. However, these methods have several drawbacks, such as a tedious and time-consuming process, high pH and temperature sensitivity, and increased chances of denaturation in vitro. Quenchbody (Q-body) is a fluorescence immunoprobe that functions based on the principle of photoinduced electron transfer and has been successful in detecting various substances. In this study, we constructed two Q-bodies based on a therapeutic antibody, adalimumab, to rapidly detect human TNF-α. Both sensors could detect TNF-α within 5 min. The results showed that the limit of detection (LOD) of TNF-α was as low as 0.123 ng/mL with a half-maximal effective concentration (EC50) of 25.0 ng/mL using the TAMRA-labeled Q-body, whereas the ATTO520-labeled Q-body had a LOD of 0.419 ng/mL with an EC50of 65.6 ng/mL, suggesting that the Q-bodies could rapidly detect TNF-α with reasonable sensitivity over a wide detection range. These biosensors will be useful tools for the detection and monitoring of inflammatory biomarkers.
CITATION STYLE
Li, H., Li, X., Chen, L., Li, B., Dong, H., Liu, H., … Dong, J. (2021). Quench-Release-Based Fluorescent Immunosensor for the Rapid Detection of Tumor Necrosis Factor α. ACS Omega, 6(46), 31009–31016. https://doi.org/10.1021/acsomega.1c03941
Mendeley helps you to discover research relevant for your work.