Klebsiella pneumoniae M5a1 is capable of utilizing 3-hydroxybenzoate via gentisate, and the 6.3-kb gene cluster mhbRTDHIM conferred the ability to grow on 3-hydroxybenzoate to Escherichia coli and Pseudomonas putida PaW340. Four of the six genes (mhbDHIM) encode enzymes converting 3-hydroxybenzoate to pyruvate and fumarate via gentisate. MhbR is a gene activator, and MhbT is a hypothetical protein belonging to the transporter of the aromatic acid/H+ symporter family. Since a transporter for 3-hydrxybenzoate uptake has not been characterized to date, we investigated whether MhbT is responsible for the uptake of 3-hydroxybenzoate, its metabolic intermediate gentisate, or both. The MhbT-green fluorescent protein (GFP) fusion protein was located on the cytoplasmic membrane. P. putida PaW340 containing mhbRΔTDHIM could not grow on 3-hydroxybenzoate; however, supplying mhbT in trans allowed the bacterium to grow on the substrate. K. pneumoniae M5a1 and P. putida PaW340 containing recombinant MhbT transported 14C-labeled 3-hydroxybenzoate but not 14C-labeled gentisate and benzoate into the cells. Site-directed mutagenesis of two conserved amino acid residues (Asp-82 and Asp-314) and a less-conserved residue (Val-311) among the members of the symporter family in the hydrophilic cytoplasmic loops resulted in the loss of 3-hydroxybenzoate uptake by P. putida PaW340 carrying the mutant proteins. Hence, we demonstrated that MhbT is a specific 3-hydroxybenzoate transporter. © 2012, American Society for Microbiology.
CITATION STYLE
Xu, Y., Gao, X., Wang, S. H., Liu, H., Williams, P. A., & Zhou, N. Y. (2012). MhbT Is a specific transporter for 3-hydroxybenzoate uptake by gram-negative bacteria. Applied and Environmental Microbiology, 78(17), 6113–6120. https://doi.org/10.1128/AEM.01511-12
Mendeley helps you to discover research relevant for your work.