Screening of Phospholipids in Plasma of Large-Artery Atherosclerotic and Cardioembolic Stroke Patients With Hydrophilic Interaction Chromatography-Mass Spectrometry

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Ischemic stroke (IS) is a deadly and debilitating disease with a high incidence and recurrence rate in elderly people worldwide. Large-artery atherosclerotic (LAA) and cardioembolic (CE) stroke are two leading subtypes and require different management. As a complementary biochemistry method for current diagnostic techniques, a sensitive and accurate phospholipid (PL) targeted lipidomic method was developed in this study. Plasma PLs were selectively extracted with titanium dioxide/fibrous silica nanosphere material, then characterized and quantified with hydrophilic interaction chromatography-mass spectrometry. A total of 31 molecular species of PLs were determined and ten biomarkers including seven molecular species of sphingomyelins (SM d18:1/18:1, d18:1/18:0, d18:1/24:1, d18:1/16:1, d18:1/22:1, d18:1/24:2, and d18:1/16:0) and three molecular species of phosphatidylcholines (16:0/18:1, 16:0/18:2 and 16:0/22:6) showed significant differences in LAA, CE, and healthy control (HC) groups. The independent diagnostic capabilities of these PL biomarkers were successfully evaluated and validated with receiver operating characteristic curves. Additionally, the oleic acid-enriched SMs, which can result in atherogenic lipoprotein aggregation, were proved to be positively related to IS and may perform as the potential risk factors in the future. Meanwhile, valuable suggestions for dietary interventions as an essential source of endogenous PLs could be obtained from this study.

Cite

CITATION STYLE

APA

Wang, H., Chen, S., Han, Z., Li, T., Ma, J., Chen, X., … Zhang, M. (2022). Screening of Phospholipids in Plasma of Large-Artery Atherosclerotic and Cardioembolic Stroke Patients With Hydrophilic Interaction Chromatography-Mass Spectrometry. Frontiers in Molecular Biosciences, 9. https://doi.org/10.3389/fmolb.2022.794057

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free