The interplay between size and valence state on the antibacterial activity of sub-10 nm silver nanoparticles

30Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Silver nanoparticles (AgNPs) have attracted enormous interest because of their excellent antibacterial properties, low cytotoxicity and limited evidence for resistance. As a general trend, smaller nanoparticles are considered to have stronger antibacterial activity. In this work we investigate whether this trend is valid for the sub-10 nm region by designing and synthesising three types of sub-10 nm AgNPs (∼1.87, ∼2.93 and ∼6.53 nm) to reveal the influence of size, valence state and structure on the antibacterial potency of AgNPs. We found that NPs with a size of ∼2.93 nm having a high concentration of silver in the first valence state presented the highest bacterial killing potency as well as low cytotoxicity to mammalian cells. The new insights presented in this study open future avenues for the engineering of highly potent silver nanoantibiotics that can be incorporated into future advanced medical devices and therapies capable of protecting patients from infections.

Cite

CITATION STYLE

APA

Haidari, H., Goswami, N., Bright, R., Kopecki, Z., Cowin, A. J., Garg, S., & Vasilev, K. (2019). The interplay between size and valence state on the antibacterial activity of sub-10 nm silver nanoparticles. Nanoscale Advances, 1(6), 2365–2371. https://doi.org/10.1039/c9na00017h

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free