Migration of toxic metals from ceramic food packaging materials into acid food Simulants

22Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Long-term extraction experiments were carried out on glazed tile specimens with 4 and 10% (v/v) acetic acid, 1% (w/v) citric acid, and 1% (v/v) lactic acid solution in three temperature conditions (20, 40, and 60°C) to investigate the effect of temperature and pH value on extraction of lead, cobalt, nickel, and zinc from ceramic food packaging materials and to study the extraction kinetics of toxic metals. Results showed that except at 60°C the amount of extraction of lead, cobalt, nickel, and zinc had linear dependence on time at longer times and removal of these toxic metals under other conditions increased linearly with the square root of the time, indicating a diffusion-controlled process. The amount of these toxic metals leached out from ceramic food packaging materials into the leachate, and the leaching rate increased with temperature and decreased with pH value of the food simulants. In addition, among these four toxic metals lead was the least leachable element, and nickel was the most leachable one. Disagreement between the ratios of the oxide of lead, cobalt, nickel, and zinc in the glaze and their release in the leachate suggested that extraction of these toxic metals was an incongruent dissolution process. © 2014 Zhanhua Dong et al.

Cite

CITATION STYLE

APA

Dong, Z., Lu, L., Liu, Z., Tang, Y., & Wang, J. (2014). Migration of toxic metals from ceramic food packaging materials into acid food Simulants. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/759018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free