Visible-light and infrared-light persistent phosphors are extensively studied and are being used as self-sustained glowing tags in darkness. In contrast, persistent phosphors for higher-energy, solar-blind ultraviolet-C wavelengths (200–280 nm) are lacking. Also, persistent tags working in bright environments are not available. Here we report five types of Pr3+-doped silicates (melilite, cyclosilicate, silicate garnet, oxyorthosilicate, and orthosilicate) ultraviolet-C persistent phosphors that can act as self-sustained glowing tags in bright environments. These ultraviolet-C persistent phosphors can be effectively charged by a standard 254 nm lamp and emit intense, long-lasting afterglow at 265–270 nm, which can be clearly monitored and imaged by a corona camera in daylight and room light. Besides thermal-stimulation, in bright environments, photo-stimulation also contributes to the afterglow emission and its contribution can be dominant when ambient light is strong. This study expands persistent luminescence research to the ultraviolet-C wavelengths and brings persistent luminescence applications to light.
CITATION STYLE
Wang, X., Chen, Y., Liu, F., & Pan, Z. (2020). Solar-blind ultraviolet-C persistent luminescence phosphors. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16015-z
Mendeley helps you to discover research relevant for your work.