The redistribution of β-thromboglobulin (βTG), platelet Factor 4 (PF4), and fibrinogen from the alpha granules of the platelet after stimulation with thrombin was studied by morphologic and immunocytochemical techniques. The use of tannic acid stain and quick-freeze techniques revealed several thrombin-induced morphologic changes. First, the normally discoid platelet became rounder in form, with filopodia, and the granules clustered in its center. The granules then fused with one another and with elements of the surface-connected canalicular system (SCCS) to form large vacuoles in the center of the cell and near the periphery. Neither these vacuoles nor the alpha granules appeared to fuse with the plasma membrane, but the vacuoles were connected to the extracellular space by wide necks, presumably formed by enlargement of the narrow necks connecting the SCCS to the surface of the unstimulated cell. The presence of fibrinogen, βTG, and PF4 in corresponding large intracellular vacuoles and along the platelet plasma membrane after thrombin stimulation was demonstrated by immunocytochemical techniques in saponin-permeabilized and nonpermeabilized platelets. Immunocytochemical labeling of the three proteins on frozen thin sections of thrombin-stimulated platelets confirmed these findings and showed that all three proteins reached the plasma membrane by the same pathway. We conclude that thrombin stimulation of platelets causes at least some of the fibrinogens, βTG, and PF4 stored in their alpha granules to be redistributed to their plasma membranes by way of surface-connected vacuoles formed by fusion of the alpha granules with elements of the SCCS.
CITATION STYLE
Stenberg, P. E., Shuman, M. A., Levine, S. P., & Bainton, D. F. (1984). Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. Journal of Cell Biology, 98(2), 748–760. https://doi.org/10.1083/jcb.98.2.748
Mendeley helps you to discover research relevant for your work.