Study of ultrafast Rabi flopping in colloidal quantum dots at room temperature

3Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The interaction between high-intensity ultrashort optical pulses and materials has led to a number of fascinating optical phenomena, including Rabi flopping and self-induced transparency. Until now, there have been few reports on ultrashort coherent pulse propagation and reshaping in semiconductor materials. Here we investigate Rabi flopping and Rabi splitting in colloidal quantum dots with Fabry-Perot cavity of SU8/Si. The Rabi flopping phenomenon is monitored via the pump-probe differential reflection spectroscopy. A high excitation power reshapes the temporal oscillations so that the fast Fourier transform spectra display several peaks. The photoluminescence spectrum by continuous-wave excitation splits under a proper incident angle, and the splitted photoluminescence spectrum is generally consistent with the amplitude of differential reflectivity as function of wavelength. These results demonstrate that both of the temporal oscillations and the splitting of the continuous-wave excited photoluminescence spectra are due to strong coupling between colloidal quantum dots and the Fabry-Perot cavity.

Cite

CITATION STYLE

APA

Xu, X., Zhen, Z., Jin, S., & Ren, J. (2021). Study of ultrafast Rabi flopping in colloidal quantum dots at room temperature. Communications Physics, 4(1). https://doi.org/10.1038/s42005-021-00724-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free