Background: The olfactory system plays a crucial role in regulating insect behaviors. The detection of odorants is mainly mediated by various odorant receptors (ORs) that are expressed in the dendrites of olfactory neurons of chemosensilla. Anophelessinensis is a major malaria vector in Eastern Asia and its genome has recently been successfully sequenced and annotated. In this study, we present genome-wide identification and expression profiling of OR genes in different chemosensory tissues of An.sinensis. Methods: The OR genes were identified using the available genome sequences of An.sinensis. A series of bioinformatics analyses were conducted to investigate the structure, genome distribution, selective pressure and phylogenetic relationships of OR genes, the conserved domains and specific functional sites in the OR amino acid sequences. The expression levels of OR genes were analyzed from transcriptomic data from An.sinensis antennae, proboscis and maxillary palps of both sexes. Results: A total of 59 putative OR genes have been identified and characterized in An.sinensis. This number is significantly less than that in An.gambiae. Whether this difference is caused by the contraction or expansion of OR genes after divergence of the two species remains unknown. The RNA-seq analysis showed that AsORs have obvious tissue- and sex-specific expression patterns. Most AsORs are highly expressed in the antennae and the expression pattern and number of AsORs expressed in antennae are similar in males and females. However, the relative levels of AsOR transcripts are much higher in female antennae than in male antennae, which indicates that the odor sensitivity is likely to be increased in female mosquitoes. Based on the expression patterns and previous studies, we have speculated on the functions of some OR genes but this needs to be validated by further behavioral, molecular and electrophysiological studies. Further studies are necessary to compare the olfactory-driven behaviors and identify receptors that respond strongly to components of human odors that may act in the process of human recognition. Conclusions: This is the first genome-wide analysis of the entire repertoire of OR genes in An.sinensis. Characterized features and profiled expression patterns of ORs suggest their involvement in the odorous reception of this species. Our findings provide a basis for further research on the functions of OR genes and additional genetic and behavioral targets for more sustainable management of An.sinensis in the future. Graphical Abstract: [Figure not available: see fulltext.]
CITATION STYLE
He, Z., Yu, Z., He, X., Hao, Y., Qiao, L., Luo, S., … Chen, B. (2022). Genome-wide identification and expression profiling of odorant receptor genes in the malaria vector Anopheles sinensis. Parasites and Vectors, 15(1). https://doi.org/10.1186/s13071-022-05259-x
Mendeley helps you to discover research relevant for your work.