Zeolitic Imidazolate Framework 67-Derived Ce-Doped CoP@N-Doped Carbon Hollow Polyhedron as High-Performance Anodes for Lithium-Ion Batteries

10Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Zeolitic Imidazolate Framework 67 (ZIF-67) and its derivates have attracted extensive interest for lithium-ion batteries (LIBs). Here, Cerium-doped cobalt phosphide@nitrogen-doped carbon (Ce-doped CoP@NC) with hollow polyhedron structure materials were successfully synthesized via ionic-exchange with Co and Ce ions using the ZIF-67 as a template followed with a facile low-temperature phosphorization treatment. Benefitting from the well-designed hollow polyhedron, steady carbon network, and Ce-doping structural merits, the as-synthesized Ce-doped CoP@NC electrode demonstrated superior performance as the anode in LIBs: a superior cyclability (400 mA h g−1 after 500 cycles) and outstanding rate-capability (590 mA h g−1, reverted to 100 mA g−1 ). These features not only produced more lithium-active sites for LIBs anode and a shorter Li-ion diffusion pathway to expedite the charge transfer, but also the better tolerance against volume variation of CoP during the repeated lithiation/delithiation process and greater electronic conductivity prop-erties. These results provide a methodology for the design of well-organized ZIFs and rare earth element-doped transition metal phosphate with a hollow polyhedron structure.

Cite

CITATION STYLE

APA

Zhai, Y., Zhou, S., Guo, L., Xin, X., Zeng, S., Qu, K., … Zhang, X. (2022). Zeolitic Imidazolate Framework 67-Derived Ce-Doped CoP@N-Doped Carbon Hollow Polyhedron as High-Performance Anodes for Lithium-Ion Batteries. Crystals, 12(4). https://doi.org/10.3390/cryst12040533

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free