Supercontinuum sources for visible light spectral domain OCT (SDOCT) are noisy and often expensive. Balanced detection can reduce excess noise, but is rarely used in SDOCT. Here, we show that balanced detection can achieve effective excess noise cancellation across all depths if two linear array spectrometers are spectrally well-matched. We propose excess noise correlation matrices as tools to achieve such precise spectral matching. Using optomechanical adjustments, while monitoring noise correlations, we proactively match wavelength sampling of two different spectrometers to just a few picometers in wavelength, or 0.001% of the overall spectral range. We show that proactively-matched spectrometers can achieve an excess noise suppression of more than two orders-of-magnitude in balanced visible light OCT, outperforming simple retrospective software calibration of mismatched spectrometers. High noise suppression enables visible light OCT of the mouse retina at 70 kHz with 125 microwatts incident power, with an inexpensive, 30 MHz repetition rate supercontinuum source. Averaged images resolve the retinal pigment epithelium in a highly pigmented mouse strain.
CITATION STYLE
Kho, A. M., & Srinivasan, V. J. (2021). Proactive spectrometer matching for excess noise suppression in balanced visible light optical coherence tomography (OCT). Optics Express, 29(25), 42037. https://doi.org/10.1364/oe.439919
Mendeley helps you to discover research relevant for your work.