In the present work, we described the synthesis and characterization of the ternary Cu2O/CuS/ZnS nanocomposite using a facile two-step wet chemical method for blue LED-light-induced photocatalytic hydrogen production. The concentrations of the ZnS precursor and reaction time were essential in controlling the photocatalytic hydrogen production efficiency of the Cu2O/CuS/ZnS nanocomposite under blue LED light irradiation. The optimized Cu2O/CuS/ZnS nanocomposite exhibited a maximum photocatalytic hydrogen evolution rate of 1109 µmolh−1g−1, which was remarkably higher than Cu2O nanostructures. Through the cycle stability it can be observed that the hydrogen production rate of the Cu2O/CuS/ZnS nanocomposite decreased after 4 cycles (1 cycle = 3 h), but it remained at 82.2% of the initial performance under blue LED light irradiation. These reasons are mainly attributed to the introduction of CuS and ZnS to construct a rationally coupled reaction system, which enables the synergistic utilization of photogenerated carriers and the increased absorption of visible light for boosting blue LED-light-driven photocatalytic hydrogen evolution.
CITATION STYLE
Chang, Y. C., Chiao, Y. C., & Fun, Y. X. (2022). Cu2O/CuS/ZnS Nanocomposite Boosts Blue LED-Light-Driven Photocatalytic Hydrogen Evolution. Catalysts, 12(9). https://doi.org/10.3390/catal12091035
Mendeley helps you to discover research relevant for your work.