Kaolinite-based wastes are researched as an alternative means of extracting metakaolinite, a pozzolanic product for the manufacture of eco-efficient cements. However, both crystallinity and the content of this crystalline phase play important roles during their thermal activation and, therefore, in their subsequent behavior in the matrix with cementitious properties. In this study, the initial compositions of two thermally activated products (paper sludge and coal waste) are studied for both the mineralogy and the mechanical properties of binary cements. The elemental composition of the materials was analyzed with X-ray Fluorescence (XRF). The mineralogy of the crystalline materials was determined by X-ray Diffraction (XRD). The sample morphology was determined with scanning electron microscopy (SEM). The pozzolanic activity is measured by accelerated methods and the preparation of the specimens of blended cement is prepared following the procedure described by Kock-Steinegger. The results showed that the pozzolanic activity of the waste (in terms of fixed lime) was similar at 90 days but that its reaction rate was different. The pozzolanic reaction of both wastes produced stratlingite and C-S-H gels, with the presence of C4AH13. The C-S-H gel generated with coal waste had very short chains, was poorer in Ca and was rich in Al. The addition of both wastes to the cement modified its mineralogical composition in comparison with a conventional cement, favoring the formation of C4AH13 over the formation of ettringite.
CITATION STYLE
García-Giménez, R., Frias, M., de la Villa, R. V., & Martínez-Ramírez, S. (2018). Ca/Si and Si/Al ratios of metakaolinite-basedwastes: Their influence on mineralogy and mechanical strengths. Applied Sciences (Switzerland), 8(4). https://doi.org/10.3390/app8040480
Mendeley helps you to discover research relevant for your work.