Link Prediction via Convex Nonnegative Matrix Factorization on Multiscale Blocks

11Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Low rank matrices approximations have been used in link prediction for networks, which are usually global optimal methods and lack of using the local information. The block structure is a significant local feature of matrices: entities in the same block have similar values, which implies that links are more likely to be found within dense blocks. We use this insight to give a probabilistic latent variable model for finding missing links by convex nonnegative matrix factorization with block detection. The experiments show that this method gives better prediction accuracy than original method alone. Different from the original low rank matrices approximations methods for link prediction, the sparseness of solutions is in accord with the sparse property for most real complex networks. Scaling to massive size network, we use the block information mapping matrices onto distributed architectures and give a divide-And-conquer prediction method. The experiments show that it gives better results than common neighbors method when the networks have a large number of missing links.

Cite

CITATION STYLE

APA

Dong, E., Li, J., & Xie, Z. (2014). Link Prediction via Convex Nonnegative Matrix Factorization on Multiscale Blocks. Journal of Applied Mathematics, 2014. https://doi.org/10.1155/2014/786156

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free