Charge transport and structure in semimetallic polymers

55Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low-cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi-metallic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping anion can lead to an order of magnitude enhancement in the charge carrier mobility > 3 cm2/Vs at conductivities approaching 3000 S/cm under ambient conditions. Grazing Incidence Wide Angle X-ray Scattering, Density Functional Theory calculations, and Molecular Dynamics simulations indicate that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer-based devices. © 2017 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 97–104.

Cite

CITATION STYLE

APA

Rudd, S., Franco-Gonzalez, J. F., Kumar Singh, S., Ullah Khan, Z., Crispin, X., Andreasen, J. W., … Evans, D. (2018). Charge transport and structure in semimetallic polymers. Journal of Polymer Science, Part B: Polymer Physics, 56(1), 97–104. https://doi.org/10.1002/polb.24530

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free