Biochemical characterization and peptide mass fingerprinting of two glutathione transferases from Biomphalaria alexandrina snails (Gastropoda: Planorbidae)

2Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The freshwater snails Biomphalaria alexandrina (Gastropoda: Planorbidae) has public health importance of being an intermediate host of Schistosoma mansoni, the parasite species that causes intestinal schistosomiasis in humans. Glutathione transferases (GSTs) play an important role in detoxification of a broad range of compounds including secondary metabolites and exogenous compounds. Studying GSTs in snails may clarify their role in detoxification of molluscicides. Results: Two glutathione transferases (BaGST2 and BaGST3) were purified and characterized from B. alexandrina snails. BaGST2 and BaGST3 were electrophoretically homogeneous preparations with subunit molecular weight of 23.6 kDa and molecular weight of 45 kDa. Isoelectric focusing of BaGST2 revealed the presence of two components at pI 4.47 and 4.67, while BaGST3 showed one band at pI 4.17. The specific activity of BaGST2 and BaGST3 toward 1-chloro-2,4-dinitrobenzene (CDNB) was 19.0 and 45.2 μmol/min/mg protein following 146- and 346-fold purification, respectively. The catalytic pH optima, km values, and the activation energies for BaGST2 and BaGST3 were determined. BaGST2 and BaGST3 were significantly inhibited by hematin and Cibacron Blue and to a less extent by bromosulfophthalein, S-butyl-GSH, S-hexyl-GSH, and S-P-bromobenzyl-GSH. BaGST2 and BaGST3 showed high activity against ethacrynic acid as substrate, and they also exhibited peroxidase activity on cumene hydroperoxide. The two enzymes showed identical patterns of lysine-C digestion after high-performance liquid chromatography. The amino acid sequences of three peptide fragments and peptide mass fingerprinting of fourteen peptides were used to predict the primary structure of BaGST2. A polypeptide of 206 amino acids (with 7 gaps, 3 of which could not identified) was predicted for BaGST2. The theoretical subunit molecular weight of BaGST2 is 22.6 kDa, with pI of 8.58. BaGST2 has 65% sequence identity and 78% positive with Biomphalaria glabrata GST7. The overall structure of BaGST2 at the N-terminal domain is identical to the canonical GST N-terminal domain, having the typical thioredoxin-like fold with a βαβ-α-ββα motif, whereas the C-terminal domain is made from 6 α-helices. A conservative GST-N-domain includes glutathione binding sites Y11, L17, Q53, M54, Q65, and S66, while a variable GST-C domain contains electrophilic substrate binding site H99, R102, A103, F106, K107, L161, and Y167. Phylogenetic tree showed that BaGST2 was clustered in the sigma group with GSTs sigma class from invertebrates and vertebrates. Conclusions: We have purified and characterized two GSTs from B. alexandrina snails. Our study broadens the biochemical information on freshwater snail GSTs by demonstrating the role of BaGSTs in defense mechanisms against structurally different electrophilic compounds. BaGST2 and BaGST3 have Se-independent peroxidase activity, which indicates their role in cellular antioxidant defense by reducing organic hydroperoxides in B. alexandrina. A polypeptide chain of 206 amino acids was predicted. The primary structure of BaGST2 showed 65% sequence identity with Biomphalaria glabrata GST7. Sequence analysis indicates that BaGST2 is a GST-N-sigma-like with a thioredoxin-like superfamily. Phylogenetic tree confirms that BaGST2 belongs to the sigma class of GSTs superfamily.

Cite

CITATION STYLE

APA

Abdalla, A. M., & Abdel Karim, G. S. A. (2022). Biochemical characterization and peptide mass fingerprinting of two glutathione transferases from Biomphalaria alexandrina snails (Gastropoda: Planorbidae). Journal of Genetic Engineering and Biotechnology, 20(1). https://doi.org/10.1186/s43141-022-00372-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free