In a network topology, where 5G (mm Waves) have better coverage footprint compared to 4G (LTE or LTE-A) technology, mobile devices would generally be handed over from 4G to 5G. In this work, a supervised intelligent prediction technique for improved handover success rate (HSR) from 4G to 5G technology is proposed. The technique is applicable for base stations enabled with sub-6-GHz and mm-wave bands. This technique is novel since it can predict HSR even before switching to 5G radio circuitry or initiating its measurement gap for acquisition of mm-wave reference signal received power (RSRP) unlike conventional algorithms. Thus, preempting all handovers which are likely to fail will provide improvements in latency, delay, and handover success rate, as well as decrease call drops. Therefore, this research work answers previous research shortcomings and can unleash applications of supervised intelligent algorithms for predicting the HSR from 4G to 5G. The proposed algorithm is validated by showing improvements obtained through simulation results performed using Python-based framework. The proposed algorithm is tested for reliability with increasing parameters such as the intensity number of UEs and simulation time. Improvements in standard handover algorithm are also proposed.
CITATION STYLE
Majid, S. I., Shah, S. W., & Marwat, S. N. K. (2020). Applications of extreme gradient boosting for intelligent handovers from 4G to 5G (mm waves) technology with partial radio contact. Electronics (Switzerland), 9(4). https://doi.org/10.3390/electronics9040545
Mendeley helps you to discover research relevant for your work.