Conservation analysis of dengue virust-cell epitope-based vaccine candidates using peptide block entropy

16Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

Abstract

Broad coverage of the pathogen population is particularly important when designing CD8+ T-cell epitope vaccines against viral pathogens. Traditional approaches are based on combinations of highly conserved T-cell epitopes. Peptide block entropy analysis is a novel approach for assembling sets of broadly covering antigens. SinceT-cell epitopes are recognized as peptides rather than individual residues, this method is based on calculating the information content of blocks of peptides from a multiple sequence alignment of homologous proteins rather than using the information content of individual residues. The block entropy analysis provides broad coverage of variant antigens. We applied the block entropy analysis method to the proteomes of the four serotypes of dengue virus (DENV) and found 1,551 blocks of 9-mer peptides, which cover 99% of available sequences with five or fewer unique peptides. In contrast, the benchmark study by Khan et al. (2008) resulted in 165 conserved 9-mer peptides. Many of the conserved blocks are located consecutively in the proteins. Connecting these blocks resulted in 78 conserved regions. Of the 1551 blocks of 9-mer peptides 110 comprised predicted HLA binder sets. In total, 457 subunit peptides that encompass the diversity of all sequenced DENV strains of which 333 areT-cell epitope candidates. © 2011 Olsen, Zhang, Keskin, Reinherz and Brusic.

Cite

CITATION STYLE

APA

Olsen, L. R., Zhang, G. L., Keskin, D. B., Reinherz, E. L., & Brusic, V. (2011). Conservation analysis of dengue virust-cell epitope-based vaccine candidates using peptide block entropy. Frontiers in Immunology, 2(DEC). https://doi.org/10.3389/fimmu.2011.00069

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free